Senegenin inhibits neuronal apoptosis after spinal cord contusion injury
نویسندگان
چکیده
منابع مشابه
Thermostabilized chondroitinase ABC Promotes Neuroprotection after Contusion Spinal Cord Injury
Background: Chondroitinase ABC (cABC), due to its loosening impact on the extracellular matrix scaffold, has been used to enhance regeneration of injured axonal tracts after spinal cord injury (SCI). However, cABC thermal instability at physiological temperature has limited its clinical application. The disaccharide trehalose has been shown to increase the stability of cABC in body temperature....
متن کاملBcl-2 in suppressing neuronal apoptosis after spinal cord injury.
BACKGROUND Apoptosis plays an important role in central neural diseases and trauma. B-cell lymphoma/Leukemia-2 (Bcl-2) can inhibit apoptosis in a wide variety of cells including neurons. In this experiment, by studying Bcl-2 over-expression transgenic (TG) mice subjected to spinal cord injury (SCI), we investigated whether Bcl-2 could reduce posttraumatic neuronal apoptosis, reduce the range of...
متن کاملNeuronal and glial apoptosis after traumatic spinal cord injury.
Cell death was examined by studying the spinal cords of rats subjected to traumatic insults of mild to moderate severity. Within minutes after mild weight drop impact (a 10 gm weight falling 6.25 mm), neurons in the immediate impact area showed a loss of cytoplasmic Nissl substances. Over the next 7 d, this lesion area expanded and cavitated. Terminal deoxynucleotidyl transferase (TdT)-mediated...
متن کاملAldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury
Aldehyde dehydrogenase 2 (ALDH2) is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury. Therefore, we hypothesized that ALDH2 could reduce spinal cord ischemia/reperfusion injury. Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta. After successful m...
متن کاملMinocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury.
We investigated whether permeability transition-mediated release of mitochondrial cytochrome c is a potential therapeutic target for treating acute spinal cord injury (SCI). Based on previous reports, minocycline, a second-generation tetracycline, exerts neuroprotection partially by inhibiting mitochondrial cytochrome c release and reactive microgliosis. We first evaluated cytochrome c release ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Regeneration Research
سال: 2016
ISSN: 1673-5374
DOI: 10.4103/1673-5374.180754